Pages - Menu

Jumat, 30 Oktober 2015

Proses Pengolahan Limbah Tekstil Dengan Sistem Lumpur Aktif


              Lumpur aktif (activated sludge) adalah proses pertumbuhan mikroba tersuspensi. Proses ini pada dasarnya merupakan pengolahan aerobik yang mengoksidasi material organik menjadi CO2 dan H2O, NH4. dan sel biomassa baru. Proses ini menggunakan udara yang disalurkan melalui pompa blower (diffused) atau melalui aerasi mekanik. Sel mikroba membentuk flok yang akan mengendap di tangki penjernihan. Kemampuan bakteri dalam membentuk flok menentukan keberhasilan pengolahan limbah secara biologi, karena akan memudahkan pemisahan partikel dan air limbah. Lumpur aktif dicirikan oleh beberapa parameter, antara lain, Indeks Volume Lumpur (Sludge Volume Index = SVI) dan Stirred Sludge Volume Index (SSVI).

           Perbedaan antara dua indeks tersebut tergantung dari bentuk flok, yang diwakili oleh faktor bentuk (Shape Factor = S). Sistem pengolah lumpur aktif baik untuk domestik maupun industri mengandung 1-5% padatan total dan 95-99% bulk water (liqour ?). Pembuangan kelebihan lumpur dilakukan dengan mengurangi volume lumpur melalui proses pengepresan (dewatering). Konsentrasi besi yang tinggi konsentrasi besi yang tinggi, 70-90% dalam bentuk Fe (III), ditemukan dalam lumpur aktif. akumulasi besi dapat berasal dari influent air limbah atau melalui penambahan FeSO4 yang digunakan untuk menghilangkan fosfor. Sebagai contoh pengolahan limbah sistem lumpur aktif adalah Unit Pengelolaan Air Limbah PT. UNITEX. Unit ini mampu mengolah limbah lebih dari 200 m2 per hari. Proses pengelolaan terbagi atas tiga tahap pemrosesan, yaitu : 1. Proses Primer, meliputi penyaringan kasar, penghilangan warna, equalisasi, penyaringan halus, pendinginan, 2. Proses Sekunder, biologi dan sedimentasi dan 3. Proses Tersier, tahap lanjutan dengan penambahan bahan kimia.

           Sistem yang digunakan dalam PAL PT. Unitex merupakan perpaduan antara proses fisika, kimia dan biologi. Yang paling berperan dalam hal pengurangan bahan-bahan pencemar adalah proses biologi yang menggunakan sistem lumpur aktif dengan extented aeratio. Selain limbah cair, terdapat juga limbah padat berupa lumpur yang merupakan hasil samping dari sistem pengolahan yang digunakan. Lumpur hasil olahan digunakan sebagai bahan campuran pembuatan coneblock dan batako press serta pupuk organik. Hal ini merupakan salah satu alternatif dan langkah lebih maju dari PT. Unitex dalam memanfaatkan kembali limbah padat.

I. PENDAHULUAN 

1.1. Latar Belakang

           Lumpur aktif (activated sludge) adalah proses pertumbuhan mikroba tersuspensi yang pertama kali dilakukan di Ingris pada awal abad 19. Sejak itu proses ini diadopsi seluruh dunia sebagai pengolah air limbah domestik sekunder secara biologi. Proses ini pada dasarnya merupakan pengolahan aerobik yang mengoksidasi material organik menjadi CO2 dan H2O, NH4. dan sel biomassa baru. Udara disalurkan melalui pompa blower (diffused) atau melalui aerasi mekanik. Sel mikroba membentuk flok yang akan mengendap di tangki penjernihan (Gariel Bitton, 1994).
           Anna dan Malte (1994) berpendapat keberhasilan pengolahan limbah secara biologi dalam batas tertentu diatur oleh kemampuan bakteri untuk membentuk flok, dengan demikian akan memudahkan pemisahan partikel dan air limbah. Lumpur aktif adalah ekosistem yang komplek yang terdiri dari bakteri, protozoa, virus, dan organisme-organisme lain. Lumpur aktif dicirikan oleh beberapa parameter, antara lain, Indeks Volume Lumpur (Sludge Volume Index = SVI) dan Stirrd Sludge Volume Index (SSVI). Perbedaan antara dua indeks tersebut tergantung dari bentuk flok, yang diwakili oleh faktor bentuk (Shape Factor = S).

           Pada kesempatan lain Anna dan Malte (1997) menyatakan bahwa proses lumpur aktif dalam pengolahan air limbah tergantung pada pembentukan flok lumpur aktif yang terbentuk oleh mikroorganisme (terutama bakteri), partikel inorganik, dan polimer exoselular. Selama pengendapan flok, material yang terdispersi, seperti sel bakteri dan flok kecil, menempel pada permukaan flok. Pembentukan flok lumpur aktif dan penjernihan dengan pengendapan flok akibat agregasi bakteri dan mekanisme adesi. Selanjutnya dinyatakan pula bahwa flokulasi dan sedimentasi flok tergantung pada hypobisitas internal dan eksternal dari flok dan material exopolimer dalam flok, dan tegangan permukaan larutan mempengaruhi hydropobisitas lumpur granular dari reaktor lumpur anaerobik.

           Frank et all (1996) mencoba menggambarkan bahwa dalam sistem pengolah lumpur aktif baik untuk domestik maupun industri mengandung 1-5% padatan total dan 95-99% bulk water (liqour ?). Pembuangan kelebihan lumpur merupakan proses yang mahal, dilakukan dengan mengurangi volume lumpur melalui proses pengepresan (dewatering). Pada bagian lain dinyatakan pula bahwa konsentrasi besi yang tinggi konsentrasi besi yang tinggi, 70-90% dalam bentuk Fe (III), ditemukan dalam lumpur aktif.

           Akumulasi besi dapat berasal dari influent air limbah atau melalui penambahan FeSO4 yang digunakan untuk menghilangkan fosfor. Jumlah besi dalam lumpur aktif akan berkurang setelah memasuki kondisi anaerobik dan mungkin berasosiasi dengan adanya aktifitas bakteri heterotrofik. Berkurangnya fosfor dalam lumpur aktif dapat menyebabkan fosfor terlepas kedalam air. Jika ini terjadi merupakan potensi untuk terjadinya eutrofikasi pada perairan.

           Enri dan Anni (1995) juga mengemukan bahwa limbah padat yang berasal dari suatu instalasi pengolah air limbah industri tekstil dapat digolongkan ke dalam limbah berbahaya karena mengandung logam berat. Mereka mengkaji kemungkinan proses solidifikasi mempergunakan tanah lempung dengan hasil yang cukup baik dari segi kekuatan tekan bebas, permeabilitas, dan hasil lindinya.

1.2. Tujuan dan Sasaran
           Penerapan teknologi ini dengan tujuan dapat menghilangkan limbah organik sederhana dan mudah urai, organik kompleks seperti warna, bau. Proses ini juga mengilangkan logam berat. Sasaran dari penerapan teknologi ini adalah air hasil pengolahan limbah tekstil tidak mencemari lingkungan.

1.3. Manfaat
           Teknologi ini dapat menurunkan total padatan tersuspensi (TSS) hingga mencapai 91%, COD 62%, Fe 96% dan BOD5 97%. Proses ini juga menghilangkan warna dan bau dari limbah tersebut.

II. PROSES LUMPUR AKTIF


2.1. Sistem Lumpur Aktif Konvensional

           Proses Lumpur Aktif Konvensional dapat dilihat pada Gambar 1. 


Gambar 1. Sistem Lumpur Aktif Konvensional


Gambar 2. Sistem Lumpur Aktif Konvensional

Tangki aerasi
           Oksidasi aerobik material organik dilakukan dalam tangki ini. Efluent pertama masuk dan tercampur dengan Lumpur Aktif Balik (Return Activated Sludge =RAS) atau disingkat LAB membentuk lumpur campuran (mixed liqour), yang mengandung padatan tersuspensi sekitar 1.500 - 2.500 mg/l. Aerasi dilakukan secara mekanik. Karakteristik dari proses lumpur aktif adalah adanya daur ulang dari biomassa. Keadaan ini membuat waktu tinggal rata-rata sel (biomassa) menjadi lebih lama dibanding waktu tinggal hidrauliknya (Sterritt dan Lester, 1988). Keadaan tersebut membuat sejumlah besar mikroorganisme mengoksidasi senyawa organik dalam waktu yang singkat. Waktu tinggal dalam tangki aerasi berkisar 4 - 8 jam.

Tangki Sedimentasi
           Tangki ini digunakan untuk sedimentasi flok mikroba (lumpur) yang dihasilkan selama fase oksidasi dalam tangki aerasi. Seperti disebutkan diawal bahwa sebaghian dari lumpur dalam tangki penjernih didaur ulang kembali dalam bentuk LAB kedalam tangki aerasi dan sisanya dibuang untuk menjaga rasio yang tepat antara makanan dan mikroorganisme (F/M Ratio).

Parameter
           Parameter yang umum digunakan dalam lumpur aktif (Davis dan Cornwell, 1985; Verstraete dan van Vaerenbergh, 1986) adalah sebagai berikut:
  1. Mixed-liqour suspended solids (MLSS). Isi tangki aerasi dalam sistem lumpur aktif disebut sebagai mixed liqour yang diterjemahkan sebagai lumpur campuran. MLSS adalah jumlah total dari padatan tersuspensi yang berupa material organik dan mineral, termasuk didalamnya adalah mikroorganisma. MLSS ditentukan dengan cara menyaring lumpur campuran dengan kertas saring (filter), kemudian filter dikeringkan pada temperatur 1050C, dan berat padatan dalam contoh ditimbang.
  2. Mixed-liqour volatile suspended solids (MLVSS). Porsi material organik pada MLSS diwakili oleh MLVSS, yang berisi material organik bukan mikroba, mikroba hidup dan mati, dan hancuran sel (Nelson dan Lawrence, 1980). MLVSS diukur dengan memanaskan terus sampel filter yang telah kering pada 600 - 6500C, dan nilainya mendekati 65-75% dari MLSS.
  3. Food - to - microorganism ratio (F/M Ratio). Parameter ini merupakan indikasi beban organik yang masuk kedalam sistem lumpur aktif dan diwakili nilainya dalam kilogram BOD per kilogram MLSS per hari (Curds dan Hawkes, 1983; Nathanson, 1986). Adapun formulasinya sebagai berikut :
F/M = Q x BOD5
MLSS x V
dimana : Q = Laju alir limbah Juta Galon per hari (MGD) BOD5 = BOD5 (mg/l) MLSS = Mixed liquor suspended solids (mg/l) V = Volume tangki aerasi (Gallon)
    Rasio F/M dikontrol oleh laju sirkulasi lumpur aktif. Lebih tinggi laju sirkulasi lumpur aktif lebih tinggi pula rasio F/M-nya. Untuk tangki aerasi konvensional rasio F/M adalah 0,2 - 0,5 lb BOD5/hari/lb MLSS, tetapi dapat lebih tinggi hingga 1,5 jika digunakan oksigen murni (Hammer, 1986). Rasio F/M yang rendah mencerminkan bahwa mikroorganisme dalam tangki aerasi dalam kondisi lapar, semakin rendah rasio F/M pengolah limbah semakin efisien.
4. Hidraulic retention time (HRT). Waktu tinggal hidraulik (HRT) adalah waktu rata-rata yang dibutuhkan oleh larutan influent masuk dalam tangki aerasi untuk proses lumpur aktif; nilainya berbanding terbalik dengan laju pengenceran (D) (Sterritt dan Lester, 1988).

HRT = 1/D = V/ Q

    dimana : V = Volume tangki aerasi Q = Laju influent air limbah ke dalam tangki aerasi D = Laju pengenceran.
5. Umur lumpur (Sludge age). Umur lumpur adalah waktu tinggal rata-rata mikroorganisme dalam sistem. Jika HRT memerlukan waktu dalam jam, maka waktu tinggal sel mikroba dalam tangki aerasi dapat dalam hari lamanya. Parameter ini berbanding terbalik dengan laju pertumbuhan mikroba. Umur lumpur dihitung dengan formula sebagai berikut (Hammer, 1986; Curds dan Hawkes, 1983) :
Umur Lumpur (Hari) =       MLSS x V      
SSe x Qe + SSw X Qw
dimana : MLSS = Mixed liquor suspended solids (mg/l). V = Volume tangki aerasi (L) SSe = Padatan tersuspensi dalam effluent (mg/l) SSw = Padatan tersuspensi dalam lumpur limbah (mg/l) Qe = Laju effluent limbah (m3/hari) Qw = Laju influent limbah (m3/hari).
Umur lumpur dapat bervariasi antara 5 - 15 hari dalam konvensional lumpur aktif. Pada musim dingin lebih lama dibandingkan musim panas (U.S. EPA, 1987a). Parameter penting yang mengendalikan operasi lumpur aktif adalah laju pemuatan organik, suplay oksigen, dan pengendalian dan operasi tangki pengendapan akhir. Tangki ini mempunyai dua fungsi: penjernih dan penggemukan mikroba. Untuk operasi rutin, orang harus mengukur laju pengendapan lumpur dengan menentukan indeks volume lumpur (SVI), Voster dan Johnston, 1987.
2.2. Modifikasi Proses Lumpur Aktif Konvensional
    Ada beberapa modifikasi dari proses lumpur aktif konvensional (Nathanson, 1986; US. EPA, 1977), Lihat Gambar 3.
Gambar 3. Modifikasi proses lumpur aktif. A. Sistem aerasi lanjutan. B. Parit oksidasi (US EPA, 1977, dalam Bitton, 1994) 
Sistem Aerasi Lanjutan
           Proses ini dipakai dalam instalasi paket pengolahan dengan cara sebagai berikut :
  1. Waktu aerasi lebih lama (sekitar 30 jam) dibandingkan sistem konvensional. Usia lumpur juga lebih lama dan dapat diperpanjang sampai 15 hari.
  2. Limbah yang masuk dalam tangki aerasi tidak diolah dulu dalam pengendapan primer.
  3. Sistem beroperasi dalam F/M ratio yang lebih rendah (umumnya <0,1 lb BOD/hari/lb MLSS) dari sistem konvensional (0,2 - 0,5 lb BOD/hari/lb MLSS).
  4. Sistem ini membutuhkan membutuhkan sedikit aerasi dibandingkan dengan pengolahan konvensional dan terutama cocok untuk komunitas yang kecil yang menggunakan paket pengolahan.
Selokan Oksidasi (Oxidation Ditch)
           Selokan oksidasi terdiri dari saluran aerasi yang berbentuk oval yang dilengkapi dengan satu atau lebih rotor rotasi untuk aerasi limbah. Saluran ini menerima limbah yang telah disaring dan mempunyai waktu tinggal hidraulik (hidraulic retention time) mendekati 24 jam.
Aerasi Bertingkat
           Limbah hasil dari pengolahan primer (pengendapan) masuk dalam tangki aerasi melalui beberapa lubang atau saluran, sehingga meningkatkan distribusi dalam tangki aerasi dan membuat lebih efisien dalam penggunaan oksigen. Proses ini dapat meningkatkan kapasitas sistem pengolahan.
Stabilisasi Kontak
           Setelah limbah dan lumpur bercampur dalam tangki reaktor kecil untuk waktu yang singkat (20-40 menit), aliran campuran tersebut dialirkan ke tangki penjernih dan lumpur dikembalikan ke tangki stabilisasi dengan waktu tinggal 4 - 8 jam. Sistem ini menghasilkan sedikit lumpur.
Sistem Aerasi Campuran
           Pada sistem ini limbah hanya diaerasi dalam tangki aerasi secara merata. Sistem ini dapat menahan shock load dan racun.
Lumpur Aktif Kecepatan Tinggi
           Sistem ini digunakan untuk mengolah limbah konsentrasi tinggi dan dioperasikan untuk beban BOD yang sangat tinggi dibandingkan proses lumpur aktif konvensional. Proses ini mempunyai waktu tinggal hidraulik sangat singkat. Sistem ini beroperasi pada konsentrasi MLSS yang tinggi.
Aerasi Oksigen Murni
           Sistem aerasi dengan oksigen murni didasarkan pada prinsip bahwa laju tranfer oksigen lebih tinggi pada oksigen murni dari pada oksigen atmosfir. Proses ini menghasilkan kemampuan oksigen terlarut menjadi lebih tinggi, sehingga meningkatkan efisiensi pengolahan dan mengurangi produksi lumpur.
2.3. Biologi Lumpur Aktif
           Dua tujuan dari sistem lumpur aktif pertama adalah oksidasi material organik yang biodegradable dalam tangki aerasi kemudian dikonversi menjadi bentuk sel yang baru, kedua flokulasi, memisahkan biomassa yang baru terbentuk dari air effluent.
Survei Organisme Dalam Lumpur Aktif
           Flok dalam aktifitas lumpur mengandung sel bakteri disamping partikel anorganik dan organik. Ukuran flok bervariasi antara <1 m m (ukuran beberapa sel bakteri) sampai dengan 1 000 m m atau lebih (Parker et al., 1971; U.S.EPA, 1987a), Lihat Gambar 3. Sel hidup dalam flok dapat diukur dengan analisis ATP dan aktifitas dehidrogenase, berjumlah 5-20% dari total sel (Weddle dan Jenkins, 1971). Beberapa peneliti menjaga agar fraksi aktif bakteri dalam lumpur aktif mewakili hanya 1-3% bakteri total (Hanel, 1988).
Berikut ini adalah beberapa mikroorganisme yang dapat diamati dalam flok lumpur aktif.
Bakteri
           Bakteri merupakan unsur utama dalam flok lumpur aktif. Lebih dari 300 jenis bakteri yang dapat ditemukan dalam lumpur aktif. Bakteri tersebut bertanggung jawab terhadap oksidasi material organik dan tranformasi nutrien, dan bakteri menghasilkan polisakarida dan material polimer yang membantu flokulasi biomassa mikrobiologi. Genus yang umum dijumpai adalah :
 Zooglea, Pseudomonas, Flavobacterium, Alcaligenes, Bacillus, Achromobacter, Corynebacterium, Comomonas, Brevibacterium, dan Acinetobacter, disamping itu ada pula mikroorganisme berfilamen, yaitu Sphaerotilus danBeggiatoa, Vitreoscilla yang dapat menyebabkan sludge bulking.
           Karena tingkat oksigen dalam difusi terbatas, jumlah bakteri aktif aerobik menurun karena ukuran flok meningkat (Hanel, 1988). Bagian dalam flok yang relatif besar membuat kondisi berkembangnya bakteri anaerobik seperti metanogen. Kehadiran metanogen dapat dijelaskan dengan pembentukan beberapa kantong anaerobik didalam flok atau dengan metanogen tertentu terhdap oksigen (Wu et al., 1987). Oleh karena itu lumpur aktif cukup baik dan cocok untuk material bibit bagi pengoperasian awal reaktor anaerobik.
Tabel 1. Distribusi Bakteri Heteropik Aerobik Dalam Lumpur Aktif Standard  (Hiraishi et al. (1989).
 Jumlah total bakteri dalam lumpur aktif standard adalah 108 CFU/mg lumpur. Tabel 1. menunjukkan beberapa genus bakteri yang ditemui dalam standard lumpur aktif. Sebagian besar bakteri yang diisolasi diidentifikasi sebagai spesies-spesies Comamonas-Psudomonas.
Caulobacter, bakteri bertangkai umumnya ditemukan dalam air yang miskin bahan organik, dapat diisolasi dari kebanyakan pengolahan limbah, khususnya lumpur aktif (MacRae dan Smit, 1991).
Zoogloea adalah bakteri yang menghasilkan exopolysaccharide yang membentuk proyeksi khas seperti jari tangan dan ditemukan dalam air limbah dan lingkungan yang kaya bahan organik (Norberg dan Enfors, 1982; Unz dan Farrah, 1976; Williams dan Unz, 1983). Zoogloea diisolasi dengan menggunakan media yang mengandung m-butanol, pati, atau m-toluate sebagai sumber karbon. Bakteri ini ditemukan dalam berbagai tahap pengolahan limbah tetapi jumlahnya hanya 0,1-1% dari total bakteri dalam mixed liqour (Williams dan Unz, 1983). Kepentingan relatif bakteri ini dalam air limbah membutuhkan penelitian lebih lanjut.
           Flok lumpur aktif juga merupakan tempat berkumpulnya bakteri autotrofik seperti bakteri nitrit (Nitrosomonas, Nitrobacter), yang dapat merubah amonia menjadi nitrat dan bakteri fototrofik seperti bakteri ungu non sulfur (Rhodospilrillaceae), yang dapat dideteksi pada konsentrasi sekitar 105 sel/ml. Bakteri ungu dan hijau ditemukan dalam jumlah yang sangat kecil. Barangkali, bakteri fototrofik hanya sedikit berperan dalam penurunan nilai BOD dalam lumpur aktif (Madigan, 1988; Siefert et al., 1978).
Fungi
           Lumpur aktif biasanya tidak mendukung kehidupan fungi walaupun beberapa fungi berfilamen kadang-kadang ditemukan dalam flok lumpur aktif. Fungi dapat tumbuh pesat dibawah kondisi pH yang rendah, toksik, dan limbah yang kekurangan nitrogen. Genus yang dominan ditemukan dalam lumpur aktif adalah Geotrichum, Penicillium, Cephalosporium, Cladosporium, dan Alternaria (Pipes dan Cooke, 1969; Tomlinson dan Williams, 1975). Lumpur ringan (Sludge Bulking) dapat dihasilkan oleh pertumbuhan yang pesat Geotrichum candidum, yang dirangsang oleh pH rendah dari limbah yang asam.
Protozoa
           Protozoa adalah significant predator dalam lumpur aktif seperti dalam lingkungan akuatik alam (Curds, 1982; Drakides, 1980; Fenchel dan Jorgensen, 1977; LaRiviere, 1977). Pemakanan bakteri oleh protozoa dapat ditentukan dengan eksperimen pemakanan bakteri yang telah diberi 14C atau 35C atau flouresen (Hoffmann dan Atlas, 1987; Sherr et al, 1987). Pemakanan bakteri tersebut dapat mereduksi toksikan. Contoh, Aspidisca costata yang memakan bakteri dalam lumpur aktif dapat menurunkan Kadmium (Hoffmann dan Atlas, 1987). Protozoa paling sering ditemukan dalam lumpur aktif adalah Carchesium, Paramecium sp, Opercularia sp, Chilodenella sp, Vorticella sp, Apidisca sp (Dart dan Stretton, 1980, Edeline, 1988; Eikelboom dan van Buijsen, 1981).
           Cilliata. Siliata atau bulu getar digunakan untuk pergerakan dan mendorong partikel makanan kedalam mulut . Siliata dibagi menjadi tiga, yaitu : Siliata bebas (free), merayap (creeping), dan bertangkai (stalked). Siliata bebas (tidak terikat) memakan bakteri bebas yang terbang. Genus yang paling penting sering ditemukan dalam lumpur aktif adalah Chilodonella, Colpidium, Blepharisma, Euplotes, Paramecium, Lionotus, Trachelophyllum, dan Spirostomum. Siliata merayap memakan bakteri yang berada dipermukaan flok lumpur aktif. Dua genus penting, yaitu : Aspidisca dan Euplotes.Cilitas bertangkai menempel tangkainya pada flok. Tangkai mempunyai myoneme untuk menangkap mangsa. Contoh siliata bertangkai adalah Vorticella, Carchesium, Opercularia, dan Epistylis.
Rotifers
           Rotifers adalah metazoa (organisme bersel banyak) dengan ukuran bervariasi dari 100 mm - 500 m m. Tubuhnya menancap pada partikel flok dan sering tercabut dari permukaan flok (Doohan, 1975; Eikelboom dan van Buijsen, 1981). Rotifers ditemukan dalam instalasi pengolahan air limbah termasuk dua orde pertama, Bdelloidea (contoh : Philodina spp., Habrotrocha spp.) dan Monogononta (contoh : Lecane spp., Notommata spp.). Peranan rotifers dalam lumpur aktif adalah : (1) menghilangkan bakteri tersuspensi (contoh : bakteri yang tidak membentuk flok; (2) memberi kontribusi terhadap pembentukan flok melalui pelet kotoran yang dikelilingi oleh mukus. Kehadiran rotifers dalam tahap akhir pengolahan limbah sistem lumpur aktif dikarenakan kenyataan bahwa hewan ini mempunyai siliata yang kuat yang menolong dalam mencari makan dan menurunkan jumlah bakteri tersuspensi (membuat air lebih jernih) dan aksi siliatanya lebih kuat dibandingkan protozoa.
2.5. Pengendapan Lumpur
           Campuran air dan lumpur (mixed liqour) dipindahkan dari tangki aerasi ke tangki pengendapan, tempat lumpur dipisahkan dari air yang telah diolah. sebagian lumpur aktif dikembalikan ke tangki aerasi dan sebagian lagi dibuang dan dipindahkan ke pengolahan aerobik. Sel mikrobial terjadi dalam bentuk agregat atau flok, densitasnya cukup untuk mengendap dalam tangki penjernih. Pengendapan lumpur tergantung ratio F/M dan umur lumpur. Pengendapan yang baik dapat terjadi jika lumpur mikroorganisme berada dalam fase endogeneous, yang terjadi jika karbon dan sumber energi terbatas dan jika pertumbuhan bakteri rendah. Pengendapan lumpur yang baik dapat terjadi pada rasio F/M yang rendah (contoh : tingginya konsentrasi MLSS). Sebaliknya, Rasio F/M yang tinggi mengakibatkan pengendapan lumpur yang buruk.
           Dalam airlimbah pemukiman, rasio F/M yang optimum antara 0,2 dan 0,5 (Gaudy dan Gaudy, 1988; Hammer, 1986). Rata-rata waktu tinggal sel yang diperlukan untuk pengendapan yang efektif adalah 3 - 4 hari (Metcalf dan Eddy, 1991). Pengendapan yang tidak baik dapat terjadi akibat gangguan yang tiba-tiba pada parameter fisik (suhu dan pH), kekurangan makanan (contoh N, suhu, mikronutrien), dan kehadiran zat racun (seperti logam berat) yang dapat menyebabkan hancurnya sebagian flok yang sudah terbentuk (Chudoba, 1989). Cara konvensional untuk monitoring pengendapan lumpur adalah dengan menentukan Indeks Volume Sludge (Sludge Volume Index = SVI). Caranya adalah sebagai berikut : Lumpur campuran dari tangki aerasi dimasukkan dalam silinder volume 1 liter dan dibiarkan selama 30 menit. Volume sludge dicatat. Volume lumpur yang mengendap adalah SV, MLSS adalah mixed liqour suspended solid (mg/l). Dalam pengolahan lumpur yang konvensional (MLSS < 3 500 mg/l) nilai SVI berkisar 50 - 150 ml/g.
 SVI (ml/g) =  SV x 1.000 
                    MLSS
III. TAHAPAN
           Instalasi Pengelolaan Air Limbah PT. Unitek dibangun Tahun 1988 di atas tanah seluas 4000 m2, dan mampu mengolah limbah tekstil lebih dari 2000 m3/hari. Proses pengolahan air limbah PT. Unitek terbagi atas tiga tahap pemrosesan, yaitu :
  1. Proses primer yang meliputi penyaringan kasar, penghilangan warna, ekualisasi, penyaringan halus, pendinginan.
  2. Proses sekunder yang meliputi proses biologi dan sedimentasi.
  3. Proses tersier yang merupakan tahap lanjutan dengan penambahan bahan kimia.
           Melalui upaya pengelolaan yang telah dilakukan, maka air limbah yang dibuang tidak akan mencemari lingkungan. Biaya investasi pembangunan instalasi ini hanya sekitar 2% dari total investasi atau sekitar 2,5 milyard rupiah. Sistem pengolah limbah yang digunakan merupakan perpaduan antara proses fisika, kimia, dan biologi. Proses yang berperan dalam pengurangan bahan pencemar adalah proses biologi yang menggunakan sistem lumpur aktif dengan aerasi lanjutan (extended aeration).
           Selain limbah cair terdapat pula limbah padat yang berupa lumpur, hasil samping dari sistem pengolahan yang digunakan. Lumpur hasil olahan digunakan sebagai bahan campuran pembuatan conblock dan batako press serta pupuk organik. Hal ini merupakan salah satu alternatif dan langkah lebih maju dari PT. Unitek dalam memanfaatkan kembali limbah padat.
Gambar 6. Unit Pengolah Limbah Tekstil Kapasitas 200 m3/hari. 
Gambar 7. Bak penampung yang masih panas. 
Gambar 8. Bak pengendap pertama 
Gambar 9. Pemberian koagulan (ferro sulfat) untuk menghilangkan warna.
Gambar 10. Bak pengendap (clarifier) setelah diberi koagulan ferro sulfat. 
Gambar 11. Menara pendingin (Colling Tower) sebelum air masuk ke dalam bak aerasi. 
Gambar 12. Bak aerasi tahap petama 
Gambar 13. Lumpur aktif dari bak pengendap akhir dikembalikan ke bak aerasi tahap pertama. 
Gambar 14. Bak pengendap akhir 
Gambar 15. Contoh air di bak pengendap akhir. 
Gambar 16. Air hasil olahan sebelum dibuang ke lingkungan. 
Gambar 17. Bioassay 
Gambar 18. Contoh air baku sampai dengan air hasil olahan.
IV. CARA PEMBUATAN
           Urutan proses pengolahan limbah di PT. Unitek secara garis besar dibagi dalam 5 unit proses yang meliputi proses primer, sekunder, dan tersier, yaitu :
  • Unit 1 : adalah proses penghilangan warna dengan sistem koagulasi dan sedimentasi.
  • Unit 2 : adalah proses penguraian bahan organik yang terkandung di dalam air limbah dengan sistem lumpur aktif.
  • Unit 3 : adalah proses pemisahan air yang telah bersih dengan lumpur aktif dari kolam aerasi.
  • Unit 4 : adalah proses penghilangan padatan tersuspensi setelah pengendapan.
  • Unit 5 : adalah proses pemanfaatan lumpur padat setelah pengepresan di belt press.
V. HASIL YANG PERNAH DICAPAI 
Sebagai gambaran hasil proses dari Unit Pengolah Limbah Tekstil tersebut adalah sebagai berikut :
Tabel . Hasil Pengamatan Konsentrasi, Debit, dan Laju Penambahan  Koagulan dan Flokulan Pada Tangki Koagulasi II, tahun 1994 (Rapto, 1996). 
Tabel . Efisiensi Removal Proses Koagulan dan Flokulasi Air Limbah Pada Penanganan Tersier, Tahun 1994 (Rapto, 1996). 
VIII. PERMASALAHAN
Teknologi ini cukup mahal investasinya. Penerapannya harus seimbang dengan investasi industri utamanya. Walaupun hasilnya memuaskan, biaya operasinya cukup tinggi.
Sumber : http://www.kelair.bppt.go.id/Sitpa/Artikel/Tekstil/tekstil.html